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Abstract—Due to their promising performance in clinical
risk prediction with Electronic Health Records (EHRs), deep
learning methods have attracted significant interest from health-
care researchers. However, there are 4 challenges: (i) Data
insufficiency. Many methods require large amounts of training
data to achieve satisfactory results. (ii) Interpretability. Results
from many methods are hard to explain to clinicians (e.g.,
why the models make particular predictions and which events
cause clinical outcomes). (iii) Domain knowledge integration.
No existing method dynamically exploits complicated medical
knowledge (e.g., relations such as cause and is-caused-by between
clinical events). (iv) Time interval information. Most existing
methods only consider the relative order of visits from EHRs, but
ignore the irregular time intervals between neighboring visits. In
the study, we propose a new model, Domain Knowledge Guided
Recurrent Neural Networks (DG-RNN), by directly introducing
domain knowledge from the medical knowledge graph into an
RNN architecture, as well as taking the irregular time intervals
into account. Experimental results on heart failure risk prediction
tasks show that our model not only outperforms state-of-the-art
deep-learning based risk prediction models, but also associates
individual medical events with heart failure onset, thus paving
the way for interpretable accurate clinical risk predictions.

Index Terms—deep learning, RNN, EHR, knowledge graph,
risk prediction

I. INTRODUCTION

There has been a rapid growth in volume and diversity of

Electronic Health Records (EHRs) during the last decades,

which makes it possible to apply clinical prediction models

to improve the quality of clinical care. EHRs are temporal

sequence data and consist of diagnosis codes, medications, lab

results, and various clinical notes. Patient health information

contained in the massive EHRs is extremely useful in different

tasks within the medical domain, such as risk prediction [1],

computational phenotyping [2], and patient similarity analysis

[3]. In this paper, we focus on clinical risk prediction tasks.

Most state-of-the-art clinical risk prediction models are

based on deep learning, and trained in an end-to-end way. Re-

current Neural Network (RNN), a popular deep learning model

for modeling sequences, has achieved good performance in

clinical risk prediction tasks recently [4]–[6]. However, there

are still some challenges in the field. (i) Although some

existing approaches achieve decent performance in prediction

tasks [1], [3], [4], a large number of parameters need more

data to train. Most models have limited performances when

EHRs data are insufficient, especially for some rare diseases.

(ii) Although some existing approaches [5], [6] try to introduce

medical domain knowledge, they mainly use the International

Classification of Diseases (ICD) code hierarchy to initialize

better medical concept embeddings, but do not dynamically

exploit complicated medical knowledge (e.g., relations such

as cause and is-caused-by between diseases) for each patient

in the whole prediction process. (iii) Most of these approaches

lack medical interpretability. It is hard to associate previous

individual medical event inputs with later clinical outcomes.

(iv) Many existing models [4]–[6] just input EHRs events

according to their time order but ignore the time intervals be-

tween neighbouring events. These limitations make it difficult

to convince doctors for clinical usages. It is crucial to develop

robust and interpretable models to combat the limitations.

In this study, we leverage a long short-term memory [7]

(LSTM, an RNN architecture) to model the sequence of

EHRs entities of each patient, which considers both EHRs

medical event series and their time of occurrence. Then,

we adopt a graph-based attention mechanism to integrate

EHRs information with a public medical knowledge graph

KnowLife1 [8]. With the help of complementary information

from this knowledge graph, our model could perform well even

if the size of available EHRs data is small. Finally, we use a

global max-pooling layer and a fully connected layer to predict

a patient’s risk for future clinical outcomes. By analyzing

the fully connected layer’s outputs, the max-pooling layer’s

outputs and returned indices, our model is able to compute

the contribution rate of each timestamp’s input medical event,

thus paving the way for interpretable clinical risk predictions.

We compare our proposed Domain Knowledge Guided

Recurrent Neural Network (DG-RNN) model with both tra-

ditional machine-learning methods (e.g., logistic regression)

and recent deep-learning methods (e.g., RETAIN, KAME) on

heart failure risk prediction tasks. We conduct experiments

on both a publicly available MIMIC-III dataset [9] and our

proprietary EHRs data. DG-RNN outperforms all the baselines

in both datasets and various settings, which demonstrates the

1http://knowlife.mpi-inf.mpg.de/
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TABLE I
NOTATIONS USED IN OUR MODEL.

Variable Description

vt The tth medical event
et The embedding of event vt
pt The time encoding for the tth input

vt,m The mth adjacent node of vt in knowledge graph
et,m The embedding of vt,m
αt,m The attention weight of et,m
gt The graph attention result for the tth input

h2t−1, h2t The LSTM’s output vectors for the tth input

C2t−1, C2t The LSTM’s hidden states for the tth input
hc The concatenation output of the output vectors
og The global max pooling output

ri The ith patient’s disease risk score

yi The ith patient’s disease risk probability
Qt The contribution risk of the output vector ht

CRt The contribution rate of medical event vt

effectiveness of the proposed model. Moreover, after DG-

RNN is well trained, it is used to find the EHRs events with

high contribution rates to heart failure. Our results show that

the selected events are well aligned with domain knowledge,

which demonstrates the interpretability of DG-RNN.

In sum, our contributions are as follows:

• We develop a DG-RNN deep learning framework, which

introduces knowledge graph into the risk prediction

model via a dynamic attention mechanism. The new

framework is able to accurately predict clinical risks, even

if the patients’ EHRs data are insufficient.

• We leverage a global pooling operation to make our

model interpretable. The model can output the contribu-

tion of each input medical event to the clinical outcome.

• We introduce time encoding to consider the irregular time

intervals between medical events, which are important for

many medical applications.

• We evaluate DG-RNN on 2 real-world EHRs datasets for

the heart failure risk prediction problem. Experimental

results show our model not only outperforms state-of-the-

art predictive models but also identifies medical events

relevant to heart failure onset.

The rest of the paper is organized as follows. In Section II,

we describe our model in detail. In Section III, we conduct

experiments on two real-world EHRs datasets. We review the

related studies in Section IV. Section V concludes our work.

II. METHOD

In this work, we present a new domain knowledge guided

RNN model (DG-RNN) to predict clinical risk, as is shown

in Figure 1. The inputs of DG-RNN consist of the medical

events and their time of occurrence. For example, at tth step

of DG-RNN, the embedding et of a medical event and its time

encoding pt are sent to LSTM. The LSTM generates an output

vector h2t−1 and a hidden state C2t−1. Then, the knowledge

graph attention module takes the sub graph adjacent to the

tth event and C2t−1 as inputs, and generates an attention

vector gt, which is input to the LSTM again and another

output vector h2t is produced. Note that the unit of our model

produces two output vectors for one input event, which can

help to compute the contribution rates of the initial medical

event and the potential information supplemented by medical

knowledge graph respectively. Next, all the output vectors are

concatenated and a global pooling operation is followed. At

last, we use a fully connected layer to predict the clinical risk.

A. Basic Notations

In the work, each patient’s EHRs data consist of a sequence

of visits which include several different medical events. Fol-

lowing previous studies (e.g., [3]), we sort all the medical

events according to their time of occurrence. Rather than

embedding the medical concepts from EHRs and knowledge

graph in two different ways [5], [6], [10], we map all the

concepts into the same feature space. For each patient i, we

denote Vi = {v1, v2, ..., vt, ..., v|Vi|} as his/her sequence of

medical events and y∗i as the ground truth that whether the

patient will be diagnosed with a given specific disease after

the hold-off window. The embeddings of the patient’s medical

events are denoted as Ei = {e1, e2, ..., et, ..., e|Ei|}, where

et ∈ Rd. We display some important notations in Table I.

B. Time Encoding.

In order for the model to make use of the time intervals

of EHRs events, we infuse the time information into the

model. When the event embeddings are sent to LSTM, we

simultaneously input “time encoding” to the model. Our time

encoding is similar to the position encoding in Transformer

[11]. Firstly, we computes each event’s relative time to the

criterion operation date and the time interval between neigh-

boring events. Then, we use sine and cosine functions of the

time intervals to present the time encoding for the tth event:

pt,4j = sin ((dateo − datet)/10000
j/d)

pt,4j+1 = cos ((dateo − datet)/10000
j/d)

pt,4j+2 = cos ((datet − datet−1)/10000
j/d)

pt,4j+3 = cos ((datet − datet−1)/10000
j/d)

0 ≤ j < d

where dateo denotes the criterion operation date, datet de-

notes the tth event’s date, and pt ∈ R4d denotes the time

encoding vector, and j is the dimension of EHRs event em-

beddings. The lengths of generated time encoding vectors are

four times of the medical event embedding vectors. The wave-

lengths form a geometric progression from 2π to 10000 ∗ 2π.

This function selection is followed to the position encoding of

Transformer [11]. The main difference from position encoding

is that our time encoding considers two kinds of time intervals

while Transformer encodes the absolute positions into vectors.

Having the medical event embedding and the time encoding,

we input both vectors into LSTM.
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Fig. 1. Framework of DG-RNN. The model’s inputs include the medical event embeddings (e1, e2, ..., en) and the corresponding time encoding vectors (p1,
p2, ..., pn). For each event input (e.g., hn), DG-RNN generates two output vectors (e.g., h2n−1 and h2n). All the output vectors are concatenated and then
a global max pooling operation is followed. Finally, a fully connected layer (FC) and a sigmoid function are used to predict the clinical risk of disease.

C. LSTM Architecture

Because of the various lengths of clinical event sequences

from different patients, RNN are suitable for modeling EHRs

data. Moreover, the middle hidden states of RNN are helpful

for attending the knowledge graph information. Given medical

event embedding and time encoding vectors, we build our

model based on LSTM [7] for its ability to recall long term

information. The LSTM model can be described as follows:

it = σ(Wiêt +Witp̂t + Uiht−1 + bi)
ft = σ(Wf êt +Wftp̂t + Ufht−1 + bf )
ot = σ(Woêt +Wotp̂t + Uoht−1 + bo) (1)

Ct = σ(Wceêt +Wctp̂t + Ucht−1 + bc) ∗ it + Ct−1 ∗ ft
ht = ot ∗ tanh(Ct)

where σ is the sigmoid function, t denotes the tth step of

LSTM, and Ct is corresponding hidden state, and ht is the out-

put vector. Wi,Wf ,Wo,Wce ∈ Rk×d, Wit,Wft,Wot,Wct ∈
Rk×4d, Ui, Uf , Uo, Uc ∈ Rk×d, bi, bf , bo, bc ∈ Rk are learn-

able parameters of the LSTM. p̂t is the time encoding vector.

êt is the input event embedding. For each event, for example

the nth event, we input the embedding en and the graph

attention result gn respectively, and obtain two output vectors

(h2n−1 and h2n). Thus, if t is odd number, êt = e(t+1)/2.

Otherwise, êt = gt/2. We assume that gn and en have the

same time encoding. Therefore, every time encoding vector is

used twice, p̂t = p(t+1)/2.

D. Knowledge Graph Attention Mechanism

A knowledge graph is used to dynamically introduce med-

ical domain knowledge. We embed different relations (e.g.,

causes and is-caused-by) and entities (e.g., diagnosis) of the

knowledge graph into d dimension feature space. Given the

tth input event vt, we denote the relations of vt in knowledge

graph as Rt = {(rt,1, vt,1), (rt,2, vt,2), ..., (rt,|Rt|, vt,|Rt|)}.
The attention mechanism is designed to automatically focus

on useful related tail entities and to find some potential

information. Formally, it takes as input the hidden state C2t−1

of the LSTM and the related relations Rt, and then generate

corresponding weights as follows:

Fig. 2. Attention mechanism. The left part of the figure is a sub graph
of medical knowledge graph. The node vt means the current input medical
event. Other nodes (e.g., vt,1 and vt,2) are the adjacent nodes of vt. All the
embeddings of the adjacent nodes (e.g., et,1 and et,2) are used to compute
the graph attention vector gt.

αt,m =
exp(βt,m)

∑|Rt|
j=1 exp(βtj)

(2)

βt,m = (Wrrt,m)Ttanh(Whet +WaC2t−1 +Wtet,m)

where Wr, Wh, Wa, Wt ∈ Rd×d are learnable parameters, and

rt,m, et,m ∈ Rd are the relation and tail entity embeddings.

Given the weights, a soft attention is used to produce the vector

gt, as shown in Figure 2. Then gt is input to the LSTM, as

shown in Figure 1.

gt =

|Rt|∑

m=1

αt,met,m (3)

E. Global Max Pooling Operation

RNN-based models are sometimes inefficient due to their

long-term dependency. When the input sequence is too long,

it is easy for the models to forget the earlier data. Therefore,

we adopt a global pooling operation to shorten the distance

between the earlier inputs and the final outputs. As is shown

in Figure 1, all the outputs of the LSTM are concatenated and

then a global pooling operation is followed. The output og is
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fed through the fully connected layer to produce the clinical

risk of patient i, which is defined as:

ri = Wsog + bs (4)

yi = sigmoid(ri)

where Ws ∈ Rk and bs ∈ R are the learnable parame-

ters, ri and yi denote the clinical risk score and probability

respectively. Because of the shortened distance between the

inputs and the outputs, the pooling operation makes it more

efficient to propagate the gradients. Besides, the global pooling

operation is useful to compute the contribution rates of the

outputs and their corresponding input medical events.

F. Objective Function

Based on Eq. (4), we use the cross-entropy between the

ground truth y∗i and the predicted result yi to calculate the

loss for each patient as follows:

L(yi, y
∗
i ) = −(y∗i log(yi) + (1− y∗i ) log(1− yi)) (5)

Note that in our implementation, we use the average loss

of batch patients each time to optimize the model. Algorithm

1 describes the overall training process of our proposed DG-

RNN.

G. Interpretability

Interpretability is very important for machine learning mod-

els of clinical applications. The global pooling operation lever-

aged in our architecture is able to associate the contribution of

each input medical event to the final clinical outcome, paving

the way for interpretable clinical risk predictions.

In Figure 1, given the output vectors, the global max

pooling layer is followed and produces the patient feature

vector hc, which is used to predict clinical risk. The max

pooling operation can return the indices of each dimension

number in hc. It means we can track the vectors which

provide specific elements of hc. After the fully connected

layer, we can calculate every dimension’s contribution risk,

as in show in the upper right part of Figure 3. We assume

that every dimension’s contribution risk of hc attributes to

the dimension’s corresponding output vector. Every output

vector’s contribution can roughly represent the corresponding

input EHRs event’s contribution. Because DG-RNN produces

two output vectors for one input event, we should sum the

corresponding two output vectors’ contribution rate for the

input event. For a case patient, the contribution rate of the tth

medical event is the sum of the two output vectors’ (h2t−1

and h2t) contribution rates, which is calculated as follow:

CRt =
Q2t−1 +Q2t∑2n
j=1 max(Qj , 0)

(6)

where Qj denotes the jth output vector’s contribution to the

risk score ri in the Eq. (4).

Figure 3 gives a toy example for illustrating the inter-

pretability of DG-RNN. As is shown in Figure 1, the LSTM

generates a lot of output vectors h∗. Our model generates

Algorithm 1 DG-RNN Model

Input: Patient’ EHRs data and medical knowledge graph

Output: Clinical risk y

1: Randomly initialize basic embedding matrix of medical

events E, LSTM parameters Wi, Wit, Wf , Wft, Wo, Wot,

Wce, Wct, Ui, Uf , Uo, Uc, bi, bf , bo and bc, attention

parameters Wr, Wh, Wa and Wt, fully connected layer

parameters Ws and bs.

2: repeat
3: Vi ←− ith patient’s EHRs data;

4: for event vt in Vi do do
5: Obtain the embedding of vt, represented as et;
6: Obtain the time encoding vector, represented as pt;
7: Input et and pt to LSTM and compute the hidden

state C2t−1 and output vector h2t−1 according to the

Eq. (1);

8: Obtain the relations of vt in knowledge graph G,

represented as Rt;

9: Calculate the attention weights αt,m of the relations

Rt according to the Eq. (2);

10: Compute the attentional vector gt according to the

Eq. (3);

11: Input gt and pt to LSTM and compute the hidden

state C2t and the output vector h2t according to the

Eq. (1);

12: end for
13: Obtain vector hc by concatenating the output vectors;

14: Obtained vector og by applying max pooling over hc;

15: Make prediction y using the Eq. (4);

16: Calculate the prediction loss L using the Eq. (5);

17: Update parameters according to the gradient of L;

18: until convergence

2n (varying from 100 to 200 in our proprietary EHRs ex-

periments) output vectors for each patient and the vectors

are 512-dimensional. In Figure 3, in order to illustrate the

interpretability clearly, we just display 2 input events and 4

corresponding 6-dimensional output vectors (h1, h2, h3, h4).

Given hc and fully connected parameters, the output risk is

computed (2.30). The first dimension’s contribution risk is 0.21

and the contribution rate is 9.1%, which comes from the fourth

output vector h4. Similarly, the fifth dimension’s contribution

rate also comes from h4. Thus, the contribution rate of the fifth

vector h4 is computed by summing the two contribution rates.

Then, we compute the contribution rate of the input e2 by

summing the contribution rates of h3 and h4, CR2 = 36.9%.

Besides, because the odd and the even numbered inputs of

LSTM is EHRs event embedding (e.g., en) and knowledge

graph attention result (gn), we assume that the contribution

rates of all the odd numbered vectors, like h2n−1, comes from

EHRs data, and the contribution rates of all the even numbered

output vectors, like h2n, comes from knowledge graph data.

Therefore, we can compute the contribution rates of EHRs

and medical knowledge graph, by summing the corresponding
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Fig. 3. A toy example for illustrating the interpretability of DG-RNN. We display two input events’ embeddings (e1 and e2) and four corresponding output
vectors (h1, h2, h3, h4) of LSTM in Figure 1. After global max pooling layer and fully connected layer (FC), DG-RNN outputs the patient’s heart failure
(HF) risk (2.30). Then the contribution risks of the six dimensions of hc are computed. The six dimensions’ contribution risks come from the four output
vectors (h1, h2, h3, h4). Therefore, each output vector’s contribution risk is calculated by summing the corresponding dimensions’ contribution risks. Finally,
the input events’ contribution rates are calculated according to Eq. (6).

TABLE II
STATISTICS OF DATASETS.

MIMIC-III EHR-120 EHR-90 EHR-60 EHR-30 EHR-14 EHR-7

number of case patients 425 442 462 494 517 536 554
number of control patients 1275 1326 1386 1482 1551 1608 1662

number of events 20528 134666 140984 152389 160584 169636 176460
number of unique events 2410 967 974 978 983 989 995

average EHRs length 12.07 76.17 76.29 77.11 77.65 79.12 79.62
average event number per visit 9.47 2.17 2.36 2.29 2.41 2.35 2.39

output vectors’ contribution rates.

III. EXPERIMENTS

In order to evaluate the effectiveness of our model, we

compare DG-RNN with some state-of-art methods on heart

failure risk prediction tasks. The experiments are conducted

on two different real-world EHRs datasets.

A. Datasets

The first dataset is extracted from a real-world proprietary

EHRs database. Firstly, we select the patients diagnosed with

heart failure as case patients. Then, for each case, we select

3 control patients according to their year of birth and gender.

For every selected case, we set an operation criterion date,

which is the heart failure confirmation date for the case patient.

Every control’s criterion date is the same as that of his/her

corresponding case. Finally, we trace back from the operation

criterion date, hold off the EHRs records in a prediction

window. There are various hold-off windows: 7, 14, 30, 60,

90 and 120 days. Following previous studies (e.g., [3]), we

prepare the data by concatenating every patient’s the medical

events according to the time of occurrence (we ignore the

orders of medical events with the same time-stamps). Thus,

every patient’s data are represented as a sequence of medical

events along with their time of occurrence. We find that the

EHRs lengths (the lengths of patients’ event sequences) of

controls are much longer than that of the cases. All the RNN

based models can easily classify them just by the length of

EHRs data rather than the clinical meaning of the medical

events in EHR. Therefore, we select all the controls and cases

with the similar EHRs lengths. In our experiments, the EHRs

lengths of the chosen patients are in [50, 100]. Although we

select the patients according to EHRs lengths, DG-RNN can

handle any length of EHRs data via LSTM.

The second dataset is a public dataset MIMIC-III [9], which

includes thousands of ICU patient data. We select the patients

data in the same way as the first dataset. The main difference
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is that we select all the controls and cases with EHRs length

in [10, 20]. Because most case patients’ EHRs lengths are less

than 20, we set the upper bound as 20. Besides, due to the

short lengths of EHRs data in MIMIC-III, we don’t set hold-off

window and use all events before the operation criterion date

to predict heart failure risk. Thus, the task becomes whether

the patients will be diagnosed with heart failure in the next

visit.

For both datasets, we remove the medical events which

appear less than 10 times in the datasets. Because most events

in the datasets are diagnosis, we also remove other types of

events (e.g. medications), but our model can handle different

kinds of medical events. The statistics of the selected datasets

are listed in Table II.

B. KnowLife: A Public Knowledge Graph

We leverage KnowLife [8], a knowledge graph that consists

of millions of entities and dozens of relationships, in our

experiments. Each entity has different properties and a unique

code CUI, which can be converted into ICD9 code for disease

entities. In our model, we use all the disease entities, and their

relations to construct a sub-graph. Because the aforementioned

datasets only include diagnosis codes, we select two relations

between diagnosis entities in KnowLife, which are causes and

is-caused-by. The embeddings of the entities and relations

are initialized with TransE [12], which is implemented by

[13] 2. When training our model, the embeddings of entities

are fine-tuned. Although only two relations are used in the

experiments, DG-RNN can handle different kinds of relations

due to the relation embedding and the attention mechanism.

C. Methods for Comparison

To validate the performance of the proposed framework

for risk prediction task, we implement the following models,

including three traditional machine learning methods, five deep

learning methods and three versions of our model.

Random Forest (RF): We compute the counts of each

medical events for each patient and normalize the vectors to

zero mean and unit variance. The resulting vector is used to

train the Random Forest model.

Logistic Regression (LR): We train the logistic regression

model with the same vectors as random forest.

Support Vector Machine (SVM): We train the support

vector machine model with the same vectors as random forest.

The support vector machine is trained with four different

kernels, including poly, rbf, linear and sigmoid. The kernel

with the best performance in validation set is used to predict

the risk in test set.

GRU and LSTM: GRU [14] and LSTM [7] are classical

RNN based models, which both introduce various gates to

improve RNN’s performance.

RETAIN: The REverse Time AttentIoN model (RETAIN)

[4] is the first work that tries to interpretate model’s disease

risk prediction results with two attention modules. The atten-

tion modules generate weights for every medical events. The

2https://github.com/thunlp/OpenKE

weights are helpful to analyze different events’ contributions

to the output risk.

GRAM: GRAM [5] uses a medical knowledge graph to

learn the medical event representations. Better representations

can help predict the future visits information.

KAME: KAME [6] proposes an attention mechanism to

exploits general knowledge to improve the prediction accuracy.

DG-RNN: DG-RNN is our proposed model which in-

troduces medical domain knowledge into RNN by using a

knowledge graph attention module. A global max pooling

operation is introduced to shorten the distance between the

earlier EHRs records and the outputs, and help to interpretate

the model’s output.

DG-RNN-nk: DG-RNN-nk, which does not use medical

knowledge graph and the attention module, is a variant version

of DG-RNN. It can help to validate the effectiveness of our

attention mechanism.

DG-RNN-np: In order to evaluate the global max pooling

operation’s effectiveness, by removing the global pooling

operation, we implement the last version DG-RNN-np, which

predicts the risk based on the last output vector of RNN.

The three traditional methods are implemented with scikit-

learn3. A grid search is adopted to find the best parameter

settings. Besides, note that GRAM and KAME originally aim

at predicting all diagnosis codes in the next visit. Therefore, we

have to modify the two baselines to adapt to the risk prediction

task. For a fair comparison to our proposed method, we use

KnowLife as the medical domain knowledge for both of them.

D. Implementation Details

We implement all the baselines and our proposed DG-

RNN models with PyTorch 0.4.14. For training models, we

use Adam optimizer with a mini-batch of 64 patients. We

train on 1 GPU (TITAN XP) for 50 epochs, with a learning

rate of 0.0001. We randomly divide the datasets into 10 sets.

All the experiment results are averaged from 10-fold cross

validation, in which 7 sets are used for training every time,

1 set for validation and 2 sets for test. The validation sets

are used to determine the best values of parameters in the

training iterations. We use the area under the receiver operating

characteristic curve (AUROC) in the test sets as a measure for

comparing the performance of all the methods in two datasets.

We use 512-dimensional embeddings to represent entities. We

use BCELoss as loss function.

E. Results of Risk Prediction

As is shown in Table III, we can observe that DG-RNN

achieves the best performance compared with all the baselines,

which demonstrates the effectiveness of the proposed model.

The overall performance of traditional machine-learning

approaches is worse than the deep learning approaches. We

speculate there are two possible reasons. The first is the

difference in the representation of medical events. The tradi-

tional approaches use high-dimensional one-hot representation

3https://scikit-learn.org/stable/
4https://pytorch.org/
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TABLE III
AUROC OF THE HEART FAILURE PREDICTION TASK.

Model MIMIC-III EHR-120 EHR-90 EHR-60 EHR-30 EHR-14 EHR-7

LR 0.6993 0.6883 0.6956 0.6932 0.7139 0.7347 0.7386
RF 0.6946 0.6726 0.6913 0.6965 0.7212 0.7217 0.7336

SVM 0.6501 0.6173 0.6339 0.6213 0.6258 0.6323 0.6372

GRU 0.7231 0.6504 0.6670 0.6939 0.7178 0.7438 0.7638
LSTM 0.7133 0.6628 0.6792 0.6982 0.7282 0.7459 0.7631

RETAIN 0.7049 0.6962 0.7115 0.7318 0.7437 0.7561 0.7683
GRAM 0.7232 0.7081 0.7292 0.7378 0.7525 0.7648 0.7656
KAME 0.7269 0.7168 0.7319 0.7392 0.7573 0.7662 0.7717

DG-RNN-nk 0.7238 0.7158 0.7310 0.7368 0.7486 0.7583 0.7663
DG-RNN-np 0.7051 0.6995 0.7075 0.7182 0.7425 0.7596 0.7723

DG-RNN 0.7375 0.7288 0.7437 0.7510 0.7663 0.7789 0.7863

TABLE IV
THE AVERAGE EPOCHS FOR THE MODELS TO CONVERGE.

Model EHR-120 EHR-60 EHR-30

DG-RNN-nk 5.6 5.3 4.8
DG-RNN-np 22.1 15.4 11.9

DG-RNN 10.5 7.6 6.6

while the deep learning approaches adopt medical concept

embedding by mapping each concept into a relatively low-

dimensional vector, which can represent the clinical mean-

ing of the medical concept. The second possible reason is

those deep learning methods are better to model the high-

dimensional and sparse data for the task of risk prediction.

Among the five deep learning baselines, KAME and GRAM

perform better than other models, which can demonstrate that

medical knowledge is useful in clinical applications.

Among the three versions of the proposed models, DG-

RNN is our main model and achieves the best performance.

Without the help of medical knowledge graph, DG-RNN-nk’

performance becomes worse than that of DG-RNN, which

demonstrates that the introduced medical knowledge is very

helpful. The performance of DG-RNN-np is also worse than

that of DG-RNN, which demonstrates that the global pooling

operation is useful to improve the model’s performance.

DG-RNN outperforms GRAM and KAME, which also

introduce medical knowledge and leverage RNN for the risk

prediction. Compared to our proposed DG-RNN: GRAM just

uses knowledge graph to initialize a static embedding, but not

to dynamically attend to sub-graph; KAME only dynamically

attends to the sub-graph in the last admission, but not fully

utilizes all the previous attention information. Moreover, our

DG-RNN applies global pooling operation over the output

vectors of RNN, which further improves the performance.

Additionally, we find that global pooling operation can

accelerate the convergence rate, which can be demonstrated in

Table IV. We compare three versions of our models, DG-RNN,

DG-RNN-nk and DG-RNN-np in their convergence rates. The

experiments are conducted in three settings of our proprietary

EHRs datasets. We can observe that DG-RNN-nk converges

fastest. Because DG-RNN has an extra knowledge graph

attention module and more parameters, it needs more epochs

to convergence. However, compared with DG-RNN-np, DG-

RNN converges much faster with global pooling operation.

The reason may be that the global pooling operation shortens

the distance between the earlier EHRs records and the outputs,

so the parameter propagation becomes more efficient.

F. Contribution Rate Analysis

Apart from the superior performance, another advantage

of DG-RNN is its interpretability. DG-RNN can be used to

analyze different medical events’ contributions to the risk of

clinical outcomes. In this subsection, we firstly show a case

study to evaluate the interpretability, and then analyze the

contributions of various events and knowledge graph.

Case Study. We apply DG-RNN-nk and DG-RNN to pre-

dict the heart failure (HF) risk of a patient from test set, who

has been diagnosed with heart failure later. Figure 4 (a) and

Figure 4 (b) respectively show the DG-RNN-nk’s and DG-

RNN’s prediction results and contributions of prior medical

events to HF. In the figure, we just display those events with

relatively high absolute value of contribution. Given a patient

i, the HR risk score ri is computed with the Eq. (4). The score

is also the sum of all the input events’ contribution, which is in

(−∞,∞). With a sigmoid function, we can obtain the patient’s

future HF probability yi = sigmoid(ri). In our experiments,

we set the threshold of HF risk score as 0. Only the positive

risk score means that the patient will be diagnosed with HF.

In Figure 4, only DG-RNN is able to correctly predict the

patient’s heart failure with a positive score of +0.27, compared

with DG-RNN-nk’s -0.71. Because we input the EHRs event

embedding and graph attention result to DG-RNN respectively,

DG-RNN can calculate the event’s and the attention module’s

contribution rates. The red color head of each bar in Figure

4 (b) means the contribution of knowledge graph. The sum

of knowledge graph’s contributions is 0.09 (i.e., the sum of

the red bar), which demonstrates that knowledge graph does

provide some useful information for HF risk prediction. Figure

4 (c) show that how the models’ output HF risks change

when the medical events are input to models along the time.

In the last 170 days prior to HF confirmation date, DG-
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Fig. 4. (a) DG-RNN-nk’s contribution of medical events to patient’s clinical outcome risk. The x-axis means the time before the heart failure (HF) confirmation
date, while the y-axis indicate the magnitude of each event’s contributions to HF risk prediction. (b) DG-RNN’s contribution of medical events to patient’s
clinical outcome risk. We introduce knowledge graph information to our DG-RNN. The red head of each bar means the knowledge graph attention module’s
contribution risk. (c) Two models’ output clinical risks along the time.

TABLE V
TOP 10 MEDICAL EVENTS WITH THE HIGHEST AVERAGE CONTRIBUTION

RATES (AVG-CR) TO HF, THEIR DISTANCE TO HF IN KNOWLIFE. THE

DISTANCE “-” MEANS THERE IS NO CONNECTED PATH BETWEEN THE

CORRESPONDING MEDICAL EVENT AND HEART FAILURE.

Name Distance AVG-CR

Obstructive sleep apnea 3 0.1393
Proliferative diabetic retinopathy - 0.1360

Macular degeneration NOS 4 0.1331
Long-term use anticoagul - 0.1283

Atrial flutter 4 0.1280
Malignant neoplasm bronchus - 0.1108

Acute respiratory failure - 0.1062
Cardiovascular abnormal function - 0.0991

End stage renal disease 2 0.0963
Thrombocytopenia NOS 3 0.0937

RNN begins to correctly predict the positive risk score of HF,

while DG-RNN does not. It demonstrates that after introducing

medical knowledge graph, DG-RNN becomes more competent

in clinical risk predictions.

Average Contribution Rate (AVG-CR) of Clinical
Events. After obtaining the contributions of every patient’s

events, we compute every unique event’s average contribution

rate (AVG-CR) on population basis. For each medical event,

the average contribution rate is obtained by averaging its

contribution rates to different patients, whose EHRs data

contain the event. Table V displays the EHR-7 setting’s top

10 medical events with the highest contributions to heart

failure (HF), their AVG-CR and distances between HF and

the events in KnowLife. The distance “-” means there is no

connected path between the corresponding medical event and

HF. We can observe that in Table V there are 5 medical

events near HF in our knowledge graph, while the other

events are not directly connected with HF. It shows that our

model considers the initial EHR data and the medical domain

knowledge simultaneously. Besides, the top 10 events contain

risk factors of HF (e.g., sleep apnea), and some common

complications (e.g., renal disease), which aligns well with

clinicians’ knowledge5.

Contribution of Knowledge Graph. DG-RNN is also able

to analyze the overall contribution of knowledge graph to the

prediction. For each patient, the initial EHR’s contribution

rate is obtained by summing the contribution risks of the odd

numbered output vectors {Q2t−1}, where t ∈ {1, 2, ..., n}.
Similarly, we can get the knowledge graph’s contribution rate

by summing {Q2t}. Figure 5 shows the average contribution

rates across all the patients in test set and their changing

5https://www.mayoclinic.org/diseases-conditions/heart-failure/symptoms-
causes/syc-20373142
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Fig. 5. Average contribution rates of different hold off windows across all
the patients in test set. The two figures show the average contribution rates of
Electronic Health Records (EHR) and Knowledge Graph (KG) respectively.

trend over the hold-off window size. It is obvious that the

smaller the hold-off window is, the higher the knowledge

graph’s contribution rate is. We can also observe the same

trend of DG-RNN’s performance in Table III. When the hold-

off window becomes small, more medical events related with

heart failure appear in case patients’ EHR. Knowledge graph

can provide more information based on the related events.

Thus, the performance gap between DG-RNN and DG-RNN-

nk becomes larger, as is shown in Table III.

G. Models’ Performances with Varying Training Data Size

To evaluate the various models’ performances when training

data are insufficient, we randomly remove some patient data

in the training set. Figure 6 shows the AUC of different

models’ heart failure prediction for increasing data size on

the two datasets EHR-120 and EHR-7. We can observe that

in general, deep learning approaches’ overall performances are

better than that of traditional machine learning approaches.

Besides, compared with the data-driven methods (RETAIN,

LSTM, GRU), the knowledge-combined methods (DG-RNN,

KAME, GRAM) have less performance degradation when con-

ducting experiments on smaller datasets, which confirms our

assumption that introducing medical domain knowledge can

alleviate the data insufficiency problem. Moreover, when the

training data size is less, the performance gaps between DG-

RNN and baselines (including KAME and GRAM) are larger,

which demonstrates that the proposed dynamical attention

mechanism is better to utilize the complementary information

of knowledge graph than the attention mechanisms of GRAM

and KAME.

IV. RELATED WORK

In recent years, with the rapid development of deep learning,

many deep learning models, such as convolutional neural

networks (CNN) [10], [15], [16] and recurrent neural networks

(RNN) [17], [18] have shown their superior ability for diverse

prediction tasks. In this section, we mainly focus on RNN

based models. For example, RNN is successfully applied in

modeling sequential EHRs data to predict diagnosis [19],

[20]. Besides, RNN can be used for patient subtyping [2],

modeling disease progression [21], and mining time series

healthcare data with missing values [17], [22]. For some

RNN based approaches, the relationships between subsequent

visits are usually ignored. To address the issue, Dipole [23]

adopts bidirectional recurrent neural networks (BRNNs) with

different attention mechanisms and significantly improves the

prediction accuracy. When preprocessing the EHRs data, most

existing models ignore the time intervals between neighbour-

ing medical events. However, the time intervals are common

and important in many healthcare applications. Therefore, a

time-aware patient subtyping model [2] is proposed to handle

irregular time intervals in longitudinal patient records. It is

demonstrated that taking time intervals into account can sig-

nificantly improve the model’s performance. In this study, DG-

RNN also considers the time intervals with a time encoding

operation.

In order to pursue better performance, many models at-

tempt to introduce medical domain knowledge. GRAM [5]

and KAME [6] both use attention mechanism to supplement

medical knowledge into their models. GRAM takes knowledge

DAG as a knowledge prior to cope with data insufficiency and

learn medically interpretable representations to make accurate

predictions. It can be regarded as a static attention mechanism

cause different patient shares the same embedding in the

graph. KAME learns meaningful and interpretable medical

code representations on the given knowledge graph for making

accurate predictions. KAME’s attention results are only used to

predict the risk, but not to represent patients’ health state. Thus

each time, KAME can only utilize the medical knowledge

related to the last visit, but not all the previous visits. Attention

mechanism is also adopted to interpret the approaches. RE-

TAIN [4], [24] propose a two-level neural attention model that

detects influential past visits and significant clinical variables

within those visits, which is clinically interpretable but not

able to achieve relatively high accuracy. There is a trade-off

in clinical applications where both accuracy and interpretabil-

ity are important. Therefore, we propose domain knowledge

guided recurrent neural networks, which can dynamically

attend medical knowledge graph, to achieve a better accuracy

while remaining clinically interpretable.

V. CONCLUSION

In this work, we presented DG-RNN, a domain knowl-

edge guided deep learning framework that introduces medical

knowledge graph information into RNN-based models for

clinical risk prediction. We leveraged a knowledge graph

attention mechanism to dynamically attend the adjacent nodes

in the knowledge graph of given patients’ EHRs. We adopted

a global pooling operation to improve performance and ac-

celerate the convergence rate. Experimental results on real-

world EHRs demonstrated that the proposed DG-RNN model

outperforms existing risk prediction models, especially when

training data are insufficient. DG-RNN model also outputs

contributions of individual medical events to final clinical

outcomes, thus paving the way for interpretable clinical risk

predictions.
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Fig. 6. Test AUC of heart failure prediction for increasing data size.
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