

Appendix to “Towards Drug Repositioning: A Unified Computational
Framework for Integrating Multiple Aspects of Drug Similarity and Disease

Similarity”
(Supplementary for DDR Drug Repositioning Methodology)

Ping Zhang, PhD, Fei Wang, PhD, Jianying Hu, PhD
Healthcare Analytics Research, IBM T.J. Watson Research Center, New York, USA

1. Overview of the BCD Approach for Solving Problem (11)

Since there are multiple groups of variables involved in the optimization problem (11), we adopt an efficient
solution based on the Block Coordinate Descent (BCD) strategy. The BCD approach works by solving the different
groups of variables alternatively until convergence. At each iteration, it solves the optimization problem with respect
to one group of variables with all other groups of variables fixed. An overview of the entire BCD procedure is
introduced in Algorithm 1.

Algorithm 1: A BCD Approach for Solving Problem (11)

Require: λ1 ≥0，λ2 ≥0，δ1≥0，δ2≥0, Kd >0, Ks>0, {Dk}k=1
Kd , {Sl}l=1

Ks , R

1: Initialize ω=(1/Kd)1∈ℝK
d

 ×1, π=(1/Ks)1∈ℝK
s
 ×1

2: Initialize U and V by performing Symmetric Nonnegative Matrix Factorization on

!D = ω kDkk=1

Kd∑ and

!S = π lSll=1

Ks∑ using the method proposed in Wang et al (2011).

3: while Not Converge do

4: Solve Λ as described in section 4

5: Solve Θ as described in section 2

6: Solve ω and π as described in section 3

7: Solve U as described in section 5

8: Solve V as described in section 6

9: end while

2. Solving Θ

The subproblem of solving Θ is

minΘ ||Θ−W ||F
2 , subject to PΩ(Θ)= PΩ(R) (12)

where W=UΛVT. This is a constrained Euclidean projection, and can be decoupled for every element in Θ. Each
subproblem has a closed form solution. By aggregating all solutions together, we can get the matrix form
representation of the solution as

Θ*= PΩc(W)+ PΩ(R) (13)

where Ωc is the complementary index set for Ω.

3. Solving ω and π

The problems of solving ω and π are similar, so we will just describe how to solve ω as an example. The subproblem
of solving ω is

minω ω k ||Dk − Σ ||F
2

k=1

Kd∑ +δ1 ||ω ||2
2 , subject to ω≥0, ωT1=1 (14)

where Σ=UUT. Let

a =[||D1 − ∑ ||F
2 , ||D2 − ∑ ||F

2 , …, ||DKd
− ∑ ||F

2]T (15)

Then we can reformulate the problem as

minω δ1 ω − 1
2δ1

a
2

2

+ c , subject to ω ≥0, ωT1=1 (16)

where c is some constant irrelevant to ω. This is a standard Euclidean projection problem and can be efficiently
solved. In our implementation we used the method in Chen and Ye (2011).

4. Solving Λ

The subproblem of solving Λ is

minΛ ||Θ−UΛVT ||F
2 , subject to Λ≥0 (17)

This is a nonnegative quadratic optimization problem and we can use Projected Gradient Descent (PGD) method
(Lin 2007) to solve it (for details please refer to section 7). In order to get the gradient of the objective of problem
(17) with respect to Λ, we expand it as:

JΛ= ||Θ−UΛVT ||F
2 = tr(Θ−UΛVT)T(Θ−UΛVT)=tr(VΛTUTUΛVT) −2tr(ΘTUΛVT)+c

where c is some constant irrelevant to Λ. Then we can derive the gradient JΛ with respect to Λ as

∂JΛ
∂Λ

= 2UTUΛVTV − 2UTΘV (18)

5. Solving U

The subproblem of solving U is

minU ||Θ−UΛVT ||F
2 +λ1 ω k ||Dk −UU

T ||F
2

k=1

Kd

∑ , subject to U≥0 (19)

We can expand the objective of problem (19) as

JU= ||Θ−UΛVT ||F
2 +λ1 ω k ||Dk −UU

T ||F
2

k=1

Kd

∑ = tr(UΛVTVΛTUT)− 2tr(UΛVTΘT)− 2λ1tr(U
T !DU)+ λ1tr(U

TUUTU)+ c

where

!D = ω kDkk=1

Kd∑ and c is some constant irrelevant to U. Then the gradient of JU with respect to U is

∂JU
∂U

= 2UΛVTVΛT − 2ΘVΛT − 2λ1 !DU + 4λ1UU
TU (20)

6. Solving V

The subproblem of solving V is

minV ||Θ−UΛVT ||F
2 +λ2 π l || Sl −VV

T ||F
2

l=1

Ks

∑ , subject to V≥0 (21)

Similarly we can expand the objective of problem (21) as

JV= ||Θ−UΛVT ||F
2 +λ2 π l || Sl −VV

T ||F
2

l=1

Ks

∑ = tr(VΛ
TUTUΛVT)− 2tr(VTΘTUΛ)− 2λ2tr(V

T !SV)+ λ2tr(V
TVVTV)+ c

where

!S = π lSll=1

Ks∑ and c is some constant irrelevant to V. Then the gradient of JV with respect to V is

∂JV
∂V

= 2VΛTUTUΛ− 2ΘTUΛ− 2λ2 !SV + 4λ2VV
TV (22)

7. Projected Gradient Descent Method for Optimization

We provide the detail of the Projected Gradient Descent (PGD) method (Lin 2007) here. For notational convenience,
we introduce a nonnegative projection operator P+(A) as

(P+ (A))ij =
Aij if Aij ≥ 0

0 otherwise

⎧
⎨
⎪

⎩⎪

Then the PG method for solving the problem min
A≥0

f (A) can be presented in Algorithm 2.

Algorithm 2: Projected Gradient

Require: 0<β<1, 0<σ<1. Initialization A(0).

Ensure: A(0)≥0

1: for k = 1,2,… do

2: A(k) = P+ (A
(k−1) −α k∇f (A

(k−1))) , where α k = β tk , and tk is the first nonnegative integer for which

3: f (A(k))− f (A(k−1)) ≤σ∇f (A(k−1))T (A(k) − A(k−1)) (23)

4: end for

Here condition (23) ensures the sufficient decrease of the function value per iteration, and this rule of determining
the stepsize is usually referred to as the Armijo rule (Bertsekas 1976). However, the Armijo rule is usually time
consuming, thus we use the following improved PG method in Algorithm 3.

Algorithm 3: Improved Projected Gradient

Require: 0<β<1, 0<σ<1. Initialization A(0), α0=1.

Ensure: A(0)≥0

1: for k = 1,2,… do

2: Assign αk = αk-1

3: If αk satisfies condition (23)

4: repeatedly increase it by αk←αk/β until either αk does not satisfy (23) or A(αk/β)=A(αk)

5: Else repeatedly decrease αk by αk←αk ⋅ β until αk satisfies condition (23)

6: Set A(k) = P+ (A
(k−1) −α k∇f (A

(k−1))) .

7: end for

8. Complexity Analysis of the BCD Solution

The computational cost involved in each BCD iteration includes:

• When updating Θ, the main computation happens at calculating UΛVT, which takes O(nKdKs+nmKs) time.

• When updating ω, the main computation happens at calculating UUT, which takes O(n2Kd) time. The
Euclidean projection takes O(KdlogKd) time.

• When updating π, the main computation happens at calculating VVT, which takes O(m2Ks) time. The
Euclidean projection takes O(KslogKs) time.

• Updating Λ involves PGD iterations. We just need to evaluate UTΘV once, which takes O(Kdnm+KdKsm)
time. At each iteration evaluating UTUΛVTV takes O(Kd

2Ks + Ks
2Kd) time (as UUT and VVT are already

computed), and evaluating the JΛ takes O(Kd
2Ks) time.

• Updating U involves PGD iterations. We just need to evaluate ΘVΛT and ΛVTVΛT once, which takes
O(nKdKs) and O(KdKs

2 + KsKd
2) time. At each iteration evaluating UΛVTVΛT takes O(nKd

2) time,

 !DU takes O(n2Kd), UUTU takes O(nKd
2 + n2Kd) time, and evaluating JU takes O(nKd

2) time.

• Updating V involves PGD iterations. We just need to evaluate ΛTUTUΛ and ΘTUΛ once, which takes
O(nKdKs + nKd

2) and O(mnKd+mKdKs) time. At each iteration evaluating VΛTUTUΛ takes O(mKs
2) time,

 !SV takes O(m2Ks) time, VVTV takes O(mKs
2 + Ksm

2) time, and evaluating JV takes O(mKs
2) time.

Adding up everything together, and considering the fact that max(Kd,Ks)<<min(m,n), we can get that the rough
computational complexity is O(R!rmn) , where R is the number of BCD iterations, and !r is the average PGD
iterations when updating Λ, U, and V.

Reference

Bertsekas DP (1976) On the Goldstein-Levitin-Polyak gradient projection method. IEEE Transactions on
Automatic Control 21:174–184

Chen Y, Ye X (2011) Projection onto a simplex. arXiv:1101.6081.

Lin CJ (2007) Projected gradient methods for nonnegative matrix factorization. Neural Comput 19(10):2756-
2779.

Wang F, Li T, Wang X, Zhu S, Ding C (2011) Community discovery using nonnegative matrix factorization.
Data Min Knowl Discov 22: 493–521.

